Effects of superoxide anions on endothelial Ca2+ signaling pathways.
نویسندگان
چکیده
Although the involvement of free radicals in the development of endothelial dysfunction under pathological conditions, like diabetes and hypercholesterolemia, has been proposed frequently, there is limited knowledge as to how superoxide anions (O2-) might affect endothelial signal transduction. In this study, we investigated the effects of preincubation with the O2(-)-generating system xanthine oxidase/hypoxanthine (XO/HX) on mechanisms for Ca2+ signaling in cultured porcine aortic endothelial cells. Incubation of cells with XO/HX yielded increased intracellular Ca2+ release and capacitative Ca2+ entry in response to bradykinin and ATP in a time- and concentration-dependent manner. This effect was prevented by superoxide dismutase but not by the tyrosine kinase inhibitor tyrphostin A48. In addition, capacitative Ca2+ entry induced by the receptor-independent stimulus 2,5-di-(tert-butyl)-1,4-benzohydroquinone or thapsigargin was enhanced in O2(-)-exposed cells (+38% and +32%, respectively). Increased Ca2+ release in response to bradykinin in XO/HX-pretreated cells might be due to enhanced formation of inositol-1,4,5-trisphosphate (+140%). Exposure to XO/HX also affected other signal transduction mechanisms involved in endothelial Ca2+ signaling, such as microsomal cytochrome P450 epoxygenase and membrane hyperpolarization to Ca2+ store depletion with thapsigargin (+103% and +48%, respectively) and tyrosine kinase activity (+97%). A comparison of bradykinin-initiated intracellular Ca2+ release and thapsigargin-induced hyperpolarization with membrane viscosity modulated by XO/HX (decrease in viscosity) or cholesterol (increase in viscosity) reflected a negative correlation between bradykinin-initiated Ca2+ release and membrane viscosity. Because intracellular Ca2+ is a main regulator of endothelial vascular function, our data suggest that O2- anions are involved in regulation of the vascular endothelium.
منابع مشابه
Superoxide Flux in Endothelial Cells via the Chloride Channel-3 Mediates Intracellular Signaling□D
Reactive oxygen species (ROS) have been implicated in both cell signaling and pathology. A major source of ROS in endothelial cells is NADPH oxidase, which generates superoxide (O2 ) on the extracellular side of the plasma membrane but can result in intracellular signaling. To study possible transmembrane flux of O2 , pulmonary microvascular endothelial cells were preloaded with the O2 -sensiti...
متن کاملRole of superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta.
Male Sprague-Dawley rats were maintained on a low-salt (LS) diet (0.4% NaCl) or changed to a high-salt (HS) diet (4% NaCl) for 3 days. Increases in intracellular Ca2+ ([Ca2+]i) in response to methacholine (10 microM) and histamine (10 microM) were significantly attenuated in aortic endothelial cells from rats fed a HS diet, whereas thapsigargin (10 microM)-induced increases in [Ca2+]i were unaf...
متن کاملWine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation.
The present study was aimed to evaluate the mechanisms involved in the vasorelaxant effects of red wine polyphenol compounds (RWPC) in small mesenteric rat arteries. RWPC produce relaxation in small mesenteric arteries. This relaxant effect was abolished by endothelial denudation, NO-synthase blockade with L-NAME and partial depolarization with KCl or L-NAME plus KCl. Incubation with the reacti...
متن کاملEffects of Superoxide Anions on Endothelial Ca Signaling Pathways
Although the involvement of free radicals in the development of endothelial dysfunction under pathological conditions, like diabetes and hypercholesterolemia, has been proposed frequently, there is limited knowledge as to how superoxide anions (O2 ) might affect endothelial signal transduction. In this study, we investigated the effects of preincubation with the O2 -generating system xanthine o...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 18 9 شماره
صفحات -
تاریخ انتشار 1998